Journal of Organometallic Chemistry, 333 (1987) 387–392 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

$(\eta^{6}$ -Cyclophane) $(\eta^{6}$ -benzene)ruthenium(II) bis(tetrafluoroborate) complexes and their geometry-dependent ¹³C NMR behavior

Toshihide Miura, Tomoyo Horishita, and Nobuo Mori*

Department of Chemistry, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162 (Japan) (Received April 13th, 1987)

Abstract

Transition-metal complexation effects which can be observed in ¹³C NMR spectra have been investigated for the $(\eta^6$ -cyclophane) $(\eta^6$ -benzene)ruthenium(II) bis(tetrafluoroborate) complexes, where the cyclophane moiety is [8]–[15]paracy-clophane, [2.2]paracyclophane, [2.2]metacyclophane or 5,13-dimethyl[2.2]metacyclophane. The complexation shifts for the complexed cyclophane-ring carbons are dependent on the degree and direction of ring bending. The magnitude of the complexation effect on the one-bond aromatic ¹³C–¹H coupling correlates with the magnitude of the complexation shift.

Introduction

Complexations of arenes with transition metals cause large upfield shifts of 13 C NMR peaks for the aryl carbons. Recently, we found that the complexation shift in Cr, Fe and Mo complexes of cyclophanes [1–4] is dependent on the metal–carbon distance.

In order to accumulate further data for complexes of other metals, our study was extended to a series of ruthenium cation complexes of the types $[Ru(\eta^6-[n]pc)(\eta^6-C_6H_6)][BF_4]_2$ (2-5), $[Ru(\eta^6-[2.2]pc)(\eta^6-C_6H_6)][BF_4]_2$ (6), $[Ru(\eta^6-[2.2]mc)(\eta^6-C_6H_6)][BF_4]_2$ (10), where *n* is 15, 12, 9 or 8, and pc and mc denote para- and metacyclophane. Similar complexes of *p*-xylene (1), *m*-xylene (7) and mesitylene (9) were used as reference complexes.

All complexes, new substances except for **6** and **9**, were prepared in the usual manner [5] and their identities were confirmed by ¹H NMR and by elemental analysis (see Experimental).

Results and discussion

The ¹³C chemical shifts (δ in ppm from internal TMS, recorded in (CD₃)₂SO) for 1-10 are given in Scheme 1. The values in parentheses are the shift differences

0022-328X/87/\$03.50 © 1987 Elsevier Sequoia S.A.

30.2 , 29.6 , 24.1

(5)

C+934(354)

Ct 881 (44.6)

Ca 131.5 (7.5)

316134 - 33 4 11 6

 $(\mathbf{3})$

(6)

117 6 (22.4)

31.4 for C(1)(4.1), 28.2, 27.8 , 24.7 , 21.5 (4)

Scheme 1. ¹³C NMR chemical shifts (in ppm from internal TMS) for complexes 1-10 in (CD₃)₂SO. Complexation shifts are given in parentheses.

from the parent hydrocarbons, i.e., the complexation shifts: $\Delta \delta = \delta$ (hydrocarbon) - δ (complex). Table 1 gives the $\Delta\delta$ values for the aromatic tertiary (C₁) and quaternary carbons (C_q) of 1–10 together with the one-bond aromatic C-H coupling data. The δ values used for the parent hydrocarbons 2–5 (in CDCl₃ solution) are data taken from the literature [4].

Complex	Carbon	$\Delta \delta^{a}$ (ppm)	ΔΔδ ^b (ppm)	¹ <i>J</i> (CH) ^{<i>c</i>} (Hz)	$\frac{\Delta^{1}J^{d}}{(\text{Hz})}$	θ ^e (°)		
						UV	FF	Х-гау
1	Cq	22.8						
	C _t	34.5		180	24			
2	Cq	24.3	1.5			< 5 ⁱ		
	C _t	34.3	-0.2	182	27			
3	Ca	22.4	-0.4			5 ^j		
	C,	35.4	0.9	182	28			
4	C.	16.7	- 6.1			5 ⁱ		
	C ⁴	38.5	4.0	183	26	-		
5	C.	12.9	-9.9			20 ^j	12.5 ^k	91/
	\tilde{C}_{t}	40.0	5.5	184	28	20	12.0	<i></i>
6	C (3)	75	-153					12.6 ^m
U	$C_q(3)$ $C_t(4)$	44.6	10.1	186	30			12.0
	C _q (11)	-0.1						
	C _t (12)	-1.4		158	2			
7	$C_q(3)$	24.8						
	$C_t(4)$	32.9		185	28			
	$C_t(5)$	33.4		186	27			
	$C_t(2)$	33.7		183	29			
8	$C_q(3)$	19.3	-5.5^{f}					
	$C_t(4)$	33.5	0.6	182	25			
	$C_{t}(5)$	37.4 48.1	4.0 ⁷ 14.4 ⁷	186 h	27			4.1^{n}
	$C_{i}(0)$ $C_{i}(11)$	1.3	14.4					9.5
	$C_{t}^{(12)}$	- 3.4		157	0			
	$C_{t}(13)$	-1.9		161	2			
	C _t (16)	-2.0		157	-1			
9	Cq	25.3						
	C _t	32.0		182	22			
10	$C_{a}(3)$	20.4	- 4.9 ^g					
	$C_t^{-1}(4)$	33.1	1.1 ^g	<i>h</i>				
	C _q (5)	27.9	2.6 ^g					3.6 °
	$C_{t}(8)$	47.3	15.3 ^g					10.2°
	$C_q(11)$	1.5		h				
	$C_t(12)$ C (13)	-1.8 -3.4						
	$C_{q}(15)$ $C_{t}(16)$	-2.3		_ h				
	• • · ·							

Table 1					
Complexation shifts	$(\Delta\delta)$, one-bond C ₁ -H	coupling constants	$(^{1}J(CH))$ and	ring-bending	angles (θ)

 ${}^{a}\Delta\delta = \delta(\text{hydrocarbon}) - \delta(\text{complex})$. ${}^{b}\Delta\Delta\delta = \Delta\delta(\text{cyclophane complex}) - \Delta\delta$ (referred to 1). ${}^{c}{}^{1}J(\text{CH})$ for the indicated C_t atom. ${}^{d}\Delta^{1}J = {}^{1}J(\text{CH})(\text{complex}) - {}^{1}J(\text{CH})(\text{hydrocarbon})$. e The bending angle of the benzene ring in the parent cyclophane, predicted by UV spectroscopy (UV) or molecular force field calculation (FF) or based on crystal X-ray diffraction. ${}^{f}\Delta\Delta\delta$ referred to 7. ${}^{g}\Delta\Delta\delta$ referred to 9. h Not measured. i Ref. [6]. j Ref. [7]. k Ref. [8]. l Ref. [9]; m Ref. [10]. n Ref. [11]. o Ref. [12].

The chemical shift assignments for C_t , C_q , C(1) (benzylic methylene carbon) and the ligand benzene carbons were based on their characteristic chemical shifts and signal intensities. C(5) and C(8) of **8**, and also C(2) and C(5) of **7** were distinguished by off-resonance decoupling.

Basic geometry

The molecular structures of 1-10 are not known, but the benzene rings of the parent cyclophanes are known or were predicted to be bent into shallow boats to different degrees [6-12], see Table 1. In the [n]pc hydrocarbons, the predicted ring-bending angle (θ) increases with a decrease in n. In [8]pc, the predicted angles are both larger than the measured angle of 9.1° [9], which is small compared with the measured 12.6° in [2.2]pc [10]. On the other hand, Cr(η^6 -[2.2]pc)(CO)₃ shows a θ value of 12.2° [13], indicating that there is no substantial change in θ upon complexation. These results taken together suggest that θ in each complex increases on going from 1 to 6.

In 5,13-dimethyl[2.2]mc, C(5) and C(8) are displaced out of the mean plane by 3.6 and 10.2°, respectively, away from the other ring [12]. Similar ring-bending is seen in [2.2]mc [11]. Interestingly, [Fe^{II}(η^6 -5,13-dimethyl[2.2]mc)(η^5 -C₅H₅)][PF₆] shows 1.0° for C(5) and 10.7° for C(8) [12], indicating that complexation causes a substantial decrease in θ for C(5).

Complexation shifts

In Scheme 1, inspection of the C(1) resonance of 2-5 shows that $\Delta\delta$ increases, on going from 2-5, from 2.7 to 4.1 ppm. The methyl carbons of 1 has a smaller $\Delta\delta$ of 1.6 ppm. The same trend was observed in Cr, Fe and Mo complexes of [n]pc's [3,4].

In Table 1, the reference complex, 1, (and also 7 and 9) shows a smaller $\Delta\delta$ for C_q than for C_t , perhaps because of a lower electron density on C_q resulting from the electronic effects of the attached methyl groups [14]. It was seen that in the [n] and [2.2]pc complexes 2–6 the difference in $\Delta\delta$ between C_t and C_q increases with an increase in θ . That is, on going from 2 to 5, the complexation-shift difference ($\Delta\Delta\delta$) for C_t from 1 increases from -0.2 to 5.5 ppm, whereas $\Delta\Delta\delta$ for C_q decreases from 1.5 to -9.9 ppm. In 6, with a larger θ , where there is neither a significant transannular nor a through-bond electronic effect on $\Delta\delta$ of the uncomplexed ring [1,2], C_t shows a larger positive $\Delta\Delta\delta$ (10.1 ppm) and C_q shows a larger negative $\Delta\Delta\delta$ (-15.3 ppm). Moreover, in the [2.2]mc complex 8, $C_t(5)$ and $C_q(8)$, which are both displaced from planarity toward Ru, show large positive $\Delta\Delta\delta$'s from 7 (4.0 and 14.4 ppm) compared with -5.5 ppm for $C_q(3)$ and 0.6 ppm for $C_t(4)$. Comparison of the results of the dimethyl[2.2]mc complex 10 with those of 9 showed no significant differences.

These results reflect just how diverse the ring bending is among the parent cyclophanes. That is, the magnitude of $\Delta\Delta\delta$ or $\Delta\delta$ is dependent on both the degree and the direction of the ring bending and is probably related to the interatomic distance between the Ru and the ligand carbon [1-4].

One-bond aromatic ${}^{13}C^{-1}H$ coupling constants. Transition metal complexation of arenes generally increase one-bond aromatic C-H coupling constants in the arene and the origin of this complexation effect has been ascribed to several factors [15]. In complex 8, the magnitude of the complexation effect ($\Delta^{l}J$) is much larger in the complexed ring than in the uncomplexed ring and correlates with the magnitude of $\Delta\delta$, as Table 1 shows. In all complexes, $\Delta^{l}J$ tends to increase with an increase in $\Delta\delta$, but does not always reflect small differences in $\Delta\delta$. It thus appears that the factors which influence $\Delta\delta$ have some direct influence on $\Delta^{l}J$.

Experimental

Materials

The complexes **6** [16] and **9** [15] are known and were prepared by the Bennett method using di- μ -chloro-bis[(η^6 -benzene)chlororuthenium(II)] [18]. The other complexes, which are new, were prepared in a similar manner. Of these, **6** and **9** are pale yellow crystals, and the others white. The parent cyclophanes used were already available in our laboratory as a consequence of previous work [1-4].

 $(\eta^6$ -Benzene) $(\eta^6$ -p-xylene)ruthenium(II) bis(tetrafluoroborate) (1). M.p. 225°C (dec.); ¹H NMR, δ 2.40(6H, s, CH₃), 6.89(6H, s, C₆H₆), 6.92(4H, s, C₆H₄). Anal. Found: C, 36.52; H, 3.43. C₁₄H₁₆RuB₂F₈ calc: C, 36.63; H, 3.51%.

 $(\eta^{6}$ -Benzene) $(\eta^{6}$ -[15]paracyclophane)ruthenium(II) bis(tetrafluoroborate) (2). M.p. 207°C (dec.); ¹H NMR, δ 0.76–1.40(22H, m, CH₂), 1.42–1.90(4H, m, CH₂), 2.50–2.88(4H, m, CH₂), 6.91(6H, s, C₆H₆), 7.01(4H, s, CH₂). Anal. Found: C, 50.52; H, 6.20. C₂₇H₄₀RuB₂F₈ calc: C, 50.72; H, 6.30%.

 $(\eta^{6}$ -Benzene) $(\eta^{6}$ -[12]paracyclophane)ruthenium(II) bis(tetrafluoroborate) (3). M.p. 170 °C (dec.); ¹H NMR, δ 0.55–1.40(16H, m, CH₂), 1.40–1.95(4H, m, CH₂), 2.50–2.92(4H, m, CH₂), 6.95(6H, S, C₆H₆), 7.08(4H, s, C₆H₄). Anal. Found: C, 48.13; H, 5.60. C₂₄H₃₄RuB₂F₈ calc: C, 48.26; H, 5.73%.

 $(\eta^{6}$ -Benzene) $(\eta^{6}$ -[9]paracyclophane)ruthenium(II) bis(tetrafluoroborate) (4). M.p. 175 °C (dec.); ¹H NMR, δ 0.24–0.81(6H, m, CH₂), 0.81–1.28(4H, m, CH₂), 1.38–1.84(4H, m, CH₂), 2.50–2.86(4H, m, CH₂), 6.88(6H, s, C₆H₆), 6.99(4H, m, C₆H₄). Anal. Found: C, 45.50; H, 4.95. C₂₁H₂₈RuB₂F₈ calc: C, 45.43; H, 5.08%.

 $(\eta^{6}$ -Benzene) $(\eta^{6}$ -[8]paracyclophane)ruthenium(II) bis(tetrafluoroborate) (5). M.p. 230 °C (dec.); ¹H NMR, δ 0.32–0.68(4H, m, CH₂), 0.72–1.20(4H, m, CH₂), 1.52–1.87(4H, m, CH₂), 2.52–2.84(4H, m, CH₂), 6.87(6H, s, C₆H₆), 7.00(4H, s, C₆H₄). Anal. Found: C, 44.45; H, 4.53. C₂₀H₂₆RuB₂F₈ calc: C, 44.39; H, 4.84%.

 $(\eta^6$ -Benzene) $(\eta^6$ -m-xylene)ruthenium(II) bis(tetrafluoroborate) (7). M.p. 182°C (dec.); ¹H NMR, δ 2.10(6H, s, CH₃), 6.91(6H, s, C₆H₆), 6.89–7.49(4H, m, C₆H₄). Anal. Found: C, 36.52; H, 3.51. C₁₄H₁₆RuB₂F₈ calc: C, 36.63; H, 3.51%.

 $(\eta^{6}$ -Benzene) $(\eta^{6}$ -[2.2]metacyclophane)ruthenium(II) bis(tetrafluoroborate) (8). M.p. 173°C (dec.); ¹H NMR, δ 2.03–2.22(4H, m, CH₂), 3.00–3.70(4H, m, CH₂), 5.20–5.32(2H, m, complexed C₆H₄), 6.69–7.00(2H, m, complexed C₆H₄), 6.70(6H, s, C₆H₆), 7.12–7.49(4H, m, uncomplexed C₆H₄). Anal. Found: C, 46.93; H, 3.89. C₂₂H₂₂RuB₂F₈ calc: C, 47.09; H, 3.95%.

 $(\eta^{6}$ -Benzene) $(\eta^{6}$ -5,13-dimethyl[2.2]metacyclophane)ruthenium(II) bis(tetrafluoroborate) (10). M.p. 220 °C (dec.); ¹H NMR, δ 2.15–2.62(4H, m, CH₂), 2.30(6H, s, CH₃), 3.00–3.51(4H, m, CH₂), 5.09–5.15(2H, m, complexed C₆H₃), 6.70(6H, s, C₆H₆), 6.70–7.13(4H, m, uncomplexed and complexed C₆H₃). Anal. Found: C, 48.58; H, 4.17. C₂₄H₂₆RuB₂F₈ calc: C, 48.92; H, 4.45%.

Spectra

The ¹³C and ¹H NMR spectra were recorded on JEOL JNM-FX100 (25.15 MHz) and JEOL JNM4H-100 (100 MHz) spectrometers, respectively, at ambient temperature as described previously [17], for ca. $\leq 5 \text{ w/v} \%$ solutions in (CD₃)₂SO; tetramethylsilane was used as the internal reference. The C-H coupling constants were measured with gated decoupling.

References

- 1 N. Mori, M. Takamori and T. Takemura, J. Chem. Soc., Dalton Trans., (1985) 1065.
- 2 N. Mori and M. Takamori, J. Chem. Soc., Dalton Trans., (1985) 1661
- 3 N. Mori and M. Takamori, Magn. Reson. Chem., 24 (1986) 151.
- 4 M. Takamori and N. Mori, J. Organomet. Chem., 301 (1986) 321.
- 5 M.A. Bennett and T.W. Matheson, J. Organomet. Chem., 175 (1979) 87. See also, M.A. Bennett, T.W. Matheson, G.B. Robertson, A.K. Smith and P.A. Tucker, Inorg. Chem., 19 (1980) 1014.
- 6 N. Mori, T. Takemura and T. Ohkuma, Bull. Chem. Soc. Jpn., 50 (1977) 179
- 7 N.L. Allinger, L.A. Freiberg, R.B. Hermann and M.A. Miller, J. Amer. Chem. Soc., 85 (1963) 1171.
- 8 N.L. Allinger, J.T. Sprague and T. Liljefors, J. Amer. Chem. Soc., 96 (1974) 5100.
- 9 M.G. Newton, T.J. Walter and N.L. Allinger, J. Amer. Chem. Soc., 95 (1973) 5652.
- 10 H. Hope, J. Bernstein and K.N. Trueblood, Acta Cryst., B28 (1972) 1733
- 11 Y. Kai, N. Yasuoka and N. Kasai, Acta Cryst., B33 (1977) 754.
- 12 A.R. Koray, T. Zahn and M.L. Ziegler, J. Organomet. Chem., 291 (1985) 53.
- 13 Y. Kai, N. Yasuoka and N. Kasai, Acta Cryst., B34 (1978) 2840.
- 14 B.R. Steele, R.G. Sutherland and C.C. Lee, J. Chem. Soc., Dalton Trans., (1981) 529.
- 15 B.E. Mann, J. Chem. Soc., Dalton Trans., (1973) 2012; R.V. Emanuel and E.W. Randall, J. Chem. Soc. A, (1969) 3002; G.M. Godner and L.J. Todd, Inorg. Chem., 13 (1974) 360; R. Aydin, H. Günther, J. Runsink, H. Schmickler and H. Seel, Org. Magn. Reson., 13 (1980) 210.
- 16 E.D. Laganis, R.G. Finke and V. Boekelheide, Tetrahedron Lett., (1980) 4405.
- 17 N. Mori and T. Takemura, J. Chem. Soc., Perkin Trans. II, (1978) 1259.
- 18 M.A. Bennett and A.K. Smith, J. Chem. Soc., Dalton Trans., (1974) 233.